
RaUL: RDFa User Interface Language – A data
processing model for web applications

Armin Haller1, Jürgen Umbrich2, and Michael Hausenblas2

1 CSIRO ICT Centre, Canberra, Australia
armin.haller@csiro.au
2 DERI Galway, Ireland

firstname.lastname@deri.org

Abstract. In this paper we introduce RaUL, the RDFa User Interface
Language, a user interface markup ontology that is used to describe the
structure of a web form as RDF statements. RaUL separates the markup
of the control elements on a web form, the form model, from the data
model that the form controls operate on. Form controls and the data
model are connected via a data binding mechanism. The form elements
include references to an RDF graph defining the data model. For the
rendering of the instances of a RaUL model on the client-side we propose
ActiveRaUL, a processor that generates XHTML+RDFa elements for
displaying the model on the client.

1 Introduction
Traditional Web applications and in particular Web forms are the most common
way to interact with a server on the Web for data processing. However, tradi-
tional web forms do not separate the purpose of the form from its presentation.
Any backend application processing the input data needs to process untyped
key/value pairs and needs to render HTML or XHTML in return. For XHTML,
XForms [3] was introduced to separate the rendering from the purpose of a Web
form. With the advent of RDFa [4], a language that allows the user to embed
structured information in the format of RDF [12] triples within XHTML doc-
uments, the presentation layer and metadata layer are similarly interweaved.
Currently, when annotating Web pages with semantic information, the user first
needs to define the structure and presentation of the page in XHTML and then
use RDFa to annotate parts of the document with semantic concepts. The data
processing in the backend requires a method to bind the data input to its pre-
sentation. For example, an input field for a first name has to be bound to an
RDF triple stating a foaf:firstname relation over this property. When return-
ing data from the server, the back-end application also needs to deal with and
create XHTML as well as RDFa code.

In this paper we introduce RaUL, the RDFa User Interface Language, a
model and language that enables to build semantic Web applications by sep-
arating the markup for the presentation layer from the data model that this
presentation layer operates on. The RaUL model (ontology) itself is described
in RDF(s). For the rendering of the RaUL model instances on the client-side we
propose ActiveRaUL, a processor that generates XHTML+RDFa elements for
displaying the model on the client.

2 Related Work

Annotating forms with semantics is a relatively new research topic in the Web
engineering realm. We are aware of some earlier attempts concerning form-based
editing of RDF data [5] as well as mapping between RDF and forms [9].

In [16, 6] we proposed a read/write-enabled Web of Data through utilizing
RDForms [11], a way for a Web browser to communicate structured updates to
a SPARQL endpoint. RDForms consists of an XHTML form, annotated with
the RDForms vocabulary3 in RDFa [4], and an RDForms processor that gleans
the triples from the form to create a SPARQL Update4 statement, which is then
sent to a SPARQL endpoint. However, RDForms is bound to a domain-agnostic
model—that is, it describes the fields as key/value pairs—requiring a mapping
from the domain ontology (FOAF, DC, SIOC, etc.) and hence is not able to
address all the use cases we have in mind.

Dietzold [10] propose a JavaScript library, which provides a more extensive
way for viewing and editing RDFa semantic content independently from the
remainder of the application. Further, they propose update and synchronization
methods based on automatic client requests. Though their model is rich and
addresses many use cases, it is restricted to a fixed environment (the Wiki), and
hence not generally applicable.

Further, there are other, remotely related works, such as SWEET [13], which
is about semantic annotations of Web APIs, as well as Fresnel [1], providing a
vocabulary to customize the rendering of RDF data in specific browser (at time
of writing, there are implementations for five browsers available). Eventually,
we found backplanejs [7] appealing; this is a JavaScript library that provides
cross-browser for XForms, RDFa, and SMIL as well as a Fresnel integration and
jSPARQL, a JSON serialization of SPARQL.

3 Motivating example

Interaction with forms is ubiquitous on the Web as we experience it every day.
From ordering a book at Amazon over updating our Google calendar; from
booking a flight via Dohop or filing bugs; from uploading and tagging pictures
on Flickr to commenting on blog posts.

The example in Figure 1 is essentially a slightly simplified version of the
common user registration forms of social networking sites, such as Facebook
or MySpace. Figure 1 shows a Web form on the left side and its encoding in
pure XHTML on the right side. We will use this example to exemplify the data
binding in RaUL in Section 4.1.

4 The RDFa User Interface Language (RaUL)

The RDFa User Interface Language provides a standard set of visual controls
that are replacing the XHTML form controls. The RaUL form controls are di-
rectly usable to define a web page in the back-end with RDF statements. The

3 http://rdfs.org/ns/rdforms
4 http://www.w3.org/TR/sparql11-update/

<html>
<head><title>Registration</title></head>
<body>
<form method=”post” action=”” id=”register”>
First Name:
<input type=”text” class=”inputtext” id=”firstname” name=”firstname” />

Last Name:
<input type=”text” class=”inputtext” id=”lastname” name=”lastname” />

Your Email:
<input type=”text” class=”inputtext” id=”reg email” name=”reg email” />

Password:
<input type=”password” class=”inputpassword” id=”reg pwd” name=”reg pwd” />

I am:
<input type=”radio” name=”sex” value=”male” />Male
<input type=”radio” name=”sex” value=”male” />Female

Birthday: <select id=”birthday day” name=”birthday day”>
<option value=”0”>Day:</option> /∗ List of days ∗/
</select> <select id=”birthday month” name=”birthday month”>
<option value=”0”>Month:</option> /∗ List of months ∗/
</select> <select name=”birthday year” id=”birthday year”>
<option value=”0”>Year:</option> /∗ List of years ∗/
</select>

<input type=”submit” name=”submit” value=”Submit” onClick=”javascript:

parseAndSend(’body’)” typeof=”raul:Button” />
</form>
</body>
</html>

Fig. 1. Example Social Networking Registration Form.

automatically rendered webpage in XHTML+RDFa from RDF statements ac-
cording to the RaUL vocabulary consists of two parts:

1. Form model : One or many form model instances which are rendered as an
XHTML page including RDFa annotations describing the structure of the
form according to the RaUL vocabulary and

2. a data model describing the structure of the exchanged data, also expressed
as RDFa annotations which are referenced from the form model instance via
a data binding mechanism.

The form model and data model parts make RaUL forms more tractable by
referencing the values in the forms with the structure of the data defined by
an ontology. It also eases reuse of forms, since the underlying essential part of
a form is no longer irretrievably bound to the page it is used in. Further, the
data model represented by the form can be accessed by external applications, ie.
semantic Web crawlers or software agents supporting users in their daily tasks.

4.1 Form model

RaUL defines a device-neutral, platform-independent set of form controls suit-
able for general-purpose use. We have implemented a mapping to XHTML form
elements. However, similar to the design of XForms the form controls can be
bound to other languages than XHTML forms as well. A user interface de-
scribed in RDF triples according to the RaUL vocabulary is not hard-coded to,
for example, display radio buttons as they are in XHTML, but it can be bound
to any host language (e.g. proprietary UIs for mobile devices). As mentioned,
our current implementation of the ActiveRaUL processor supports the rendering
of XHTML+RDFa.

A form control in RaUL is an element that acts as a direct point of user inter-
action and provides write access to the triples in the data model. The controls are
bound to the data model via a binding mechanism. Every form control element
has a value property that is associated to a reified triple or named graph in the
data model (see Section 4.2). Form controls, when rendered by the ActiveRaUL
processor, display the underlying data values to which they are bound.

In the following we describe the RaUL form controls, including their at-
tributes. They are declared using the RaUL form ontology. Figure 2 shows a
class diagram like overview of the main classes in the ontology. The full ontology
can be found at: http://purl.org/NET/raul#.

Fig. 2. RaUL form model

Page: The Page class acts as the main container for all other content in a RaUL
document. In the mapping to XHTML a Page instance maps to a <body>
element.

Widget: All form controls are a subclass of the Widget class inheriting its
standard properties, a label and a name. The Widget class includes a value
property that is used to associate triples in the data model to a control
element.

WidgetContainer: A WidgetContainer groups Widgets together. It is simi-
lar to a form container in XHTML and in the mapping to XHTML every
WidgetContainer is rendered as a <form> in XHTML. It defines a method
and action property to define the form submission. The ordering of the form
controls in a WidgetContainer is defined with an RDF collection. When
rendering the XHTML+RDFa code, the ActiveRaUL processor determines
the positioning of the control elements based on the ordering in the RDF
collection.

Textbox: The Textbox form control enables free-form data entry. The con-
straints on the input type are obtained from the underlying triples asso-
ciated with the Textbox control element. In XHTML a Textbox is rendered
as an input box of type text. Properties of the Textbox are, disabled, hidden,
isPassword, maxlength, row and size. These properties are straightforwardly
mapped to their equivalents in the XHTML model.

Listbox: This form control allows the user to make one or multiple selections
from a set of choices. Special properties include list, multiple, row and dis-
abled. In case of the row and multiple properties the rendering in XHTML is
straightforward. In both cases it is rendered as a select input box displayed

as a multi-row selection box (row) and with the ability to select more than
one value (multiple). The list property is used to associate the Listbox to
a collection of Listitems. Listitems are required to define a value and label
property and can be defined as checked.

Button: The Button form control is used for actions. Beyond the common at-
tributes inherited from its superclasses it defines the following properties,
checked, command, disabled and group. The mapping to XHTML creates ei-
ther a normal push button (ie. an input field of type button) or a submit
button in case the command property is set to “submit”. A submit button
is used to trigger the action defined in the form element. The Radiobutton
and the Checkbox are subclasses of a Button in the RaUL vocabulary. They
are mapped to their respective counterparts in XHTML, input controls of
type radio or of type checkbox, respectively. To group buttons together and
determine the selected values, the group property of the Button class can
be used. For the data binding any Group of Buttons, ie. either Radiobuttons
or Checkboxes, which values are not literals, must bind to an RDF collec-
tion with the same number of node elements as there are Buttons in the
respective group. After the submission of the Button control element the
JavaScript processor creates a checked relation for all selected Checkboxes
or for the selected Radiobutton denoting the user selection of the respective
control element.

4.2 Data model

The purpose of XHTML forms is to collect data and submit it to the server. In
contrast to the untyped data in XHTML forms, in RaUL this data is submitted
in a structured way as RDF data according to some user defined schema. The
data, defined in the backend as an RDF graph, is also encoded in the gener-
ated XHTML+RDFa document as statements within a WidgetContainer. This
approach gives the user full flexibility in defining the structure of the model.
Empty rdf:object fields serve as place-holders in the RDF statement describ-
ing the data for a control element (see the rdf:object property in Figure 3) and
are filled at runtime by the JavaScript processor with the user input. Initial val-
ues can be provided in the rdf:object field which is used by the ActiveRaUL
processor in the initial rendering to fill the value field of the XHTML form.

In our motivating example, the data structure of the firstname element is
given by the FOAF ontology [8], a vocabulary to describe persons, their ac-
tivities and their relations to each other. We use RDF reification to associate
this triple in the RaUL form model instance in the firstname textbox. Reifi-
cation in RDF describes the ability to treat a statement as a resource, and
hence to make assertions about that statement. Listing 3 shows how the triple
<http://sw.deri.org/ haller/foaf.rdf#ah><foaf:name><””> which defines the
data structure of the #valuefirstname is described as a resource using RDF
reification.

This new resource is then associated in the form model instance with the
raul:value property as shown in Listing 4. Initial values for the instance data

Fig. 3. RDFa reified triple for a foaf:firstname object.

First Name:

Fig. 4. Value association in the firstname textbox.

may be provided or left empty. As such, the data model essentially holds a
skeleton RDF document that gets updated as the user fills out the form. It
gives the author full control on the structure of the submitted RDF data model,
including the reference of external vocabulary. When the form is submitted, the
instance data is serialized as RDF triples.

5 Architecture & Interaction

The general architecture as shown in Figure 5 follows the Model-View-Controller
(MVC) pattern [14]. It uses a Java servlet container as the controller part, RDF
as the general model for the domain logic and the ActiveRaUL Processor as
the responsible for the view creation (GUI). A client interacts with RaUL by
triggering a submit action of a particular XHTML form. Before the form sub-
mission to the server, the parseAndSend(...) function of the JavaScript (JS)
Processor handles the RDFa parsing on the client side by extracting the em-
bedded RDF content and the HTTP request method from the DOM (Document
Object Model) tree. The implementation of the parser and the data binding is
a pure Ajax implementation. Once the request is submitted to the server, the
Controller Servlet handles the RDF input and the related HTTP response mes-
sage. The input content (the structure/form and instance information) will be
validated and processed according to the domain-logic as implemented in the
backend application by the service provider. The response is modeled again in
RDF and forwarded to the ActiveRaUL Processor. It controls the presentation of
the response at the server side by generating the XHTML+RDFa representation.
Finally, the Controller Servlet streams the generated data back to the client. This
allows not only browsers to interact with the server but also Web crawlers or
automated agents to ingest the data since they receive the full XHTML+RDFa
content.

6 Evaluation

The evaluation is split into two parts: 1) a comparison between existing solutions
based on features and 2) benchmarks of the overhead added by the RDFa markup
to the existing XHTML forms.

BROWSER

Controller
Servlet

ActiveRaULForm
Processor

JSP Compiler

JavaScript
 - UI rendering
 - RDFa parsing

define structure
of View & instance data

generates
XHTML+RDFa

sends structure &
instance data
of filled form

JS Processor
parseAndSend(Page)

Server

Client

Automatic
Agents

Crawler

Fig. 5. Architecture diagram.

6.1 Feature comparison

We compare our approach 1) RaUL with 2) the native XHTML form/POST
mechanism, 3) RDForms, 4) XForms and 5) XUL.

The first category of features are the complexity of the development on the
client and server side. The complexity on the client-side is only low for XHTML
forms as it is supported by all browsers. XForms requires Ajax scripts or browser
plug-ins (for Firefox) rendering the data. RaUL and RDForms provide third-
party JavaScript libraries which parse and process RDF statements from the
RDFa annotations and for the latter transforms the statements into an SPARQL
update operation. Processing XUL on the client side requires a high complexity;
it is a proprietary language that has to be rendered by client-side code (ie. in
Firefox). Looking at the complexity for the server-side handling of the request,
XHTML forms have a medium complexity. Although there exists an abundance
of CGI scripts that handle the requests and submitted parameters, the data is
submitted as untyped key/value pairs only which have to be handled in cus-
tom built code. RDForms require a medium complexity since the server has to
understand SPARQL update requests. RaUL has a low complexity, since it pro-
vides a generic ActiveRaUL service that handles the RDF serialization. The web
application developer only needs to deal with triples for which many data ab-
straction layers exist. The complexity for XForms is low as the data is encoded
in XML and for XUL all logic resides on the client-side and thus the server side
complexity is low.

The second feature category are general characteristics of the approaches.
The first characteristic is that the solution should be representation agnostic
with respect to the RDF input/output, meaning whatever RDF serialization is
supplied (RDF/XML, Turtle, RDFa, microformats+GRDDL), the system should
be able to handle it. This is not possible with any language but RDForms. The
current implementation of ActiveRaUL only supports RDFa, but in future work
we intend to support other formats as well. The second characteristic is the sup-
port for an explicit data model : XHTML does not define a data model, the data
is send as key/value pairs. RaUL and RDForms explicitly define the data model
in RDF. XUL and XForms define it in XML. The third characteristic is the form
model - which is, if the client request contains the form model as structured data.
Only RaUL and XUL encode the form model explicitly. XHTML forms do not

RaUL XHTML form RDForms XForms XUL
1. Complexity

1.1 Client medium low medium medium high
1.2 Server low medium medium low low

2. Characteristics
2.1 Agnostic no no yes no no
2.2 Data Model yes no yes yes yes
2.3 Form Model yes limited limited limited yes
2.4 Browser support all all all some one

Table 1. Comparison of different update interfaces

Form Element XHTML XHTML+RDFa # triples Overhead in %
min max min max min max min max

Page 39 89 121 279 1 4 210% 213%
WidgetContainer 72 115 251 376 3 6 248% 226%
Textbox 41 100 88 377 1 7 114% 277%
ListBox 49 125 228 459 4 8 365% 367%
Button 48 81 98 415 1 8 104% 412%
Table 2. Comparison of added overhead by RDFa markup. Min and max values in the
XHTML and XHTML+RDF columns are the content size in Bytes.

define the form model as structured data, but offer DOM manipulation. RD-
Forms do not define the form structure explicitly either, but the mapping logic
between the RDF triples defining the form and the XHTML rendering is hard-
coded in the transformation tool. The last characteristic is the browser support
of the approaches. The first four solutions are browser independent approaches;
RaUL, RDForms and XForms also require that the browser supports and enables
JavaScript. XUL is only supported by Firefox.

6.2 Overhead Benchmark

From a performance point of view it is of interest how much overhead in the data
size is added by the RDFa annotated forms. The processing and parsing speed
of the page content depends on the file size wrt. to two factors. 1) The resulting
download time (file size / available bandwidth) and 2) how efficient an RDFa
parser can handle the content; the RDFa parser used in our implementation –
as with most other RDFa parsers – needs to parse the whole DOM structure
into memory to recreate the RDF structure. Thus, we measured the additional
overhead in bytes for the form elements in Table 2.

Minimal (min) in the table denotes the minimal RaUL model to generate the
respective form element (or page). The maximal (max) value denotes a model
that uses all properties of the respective form element in its annotation. The
number of triples column denotes how many RDF triples are required in the
backend and are encoded in the resulting web page as annotations. Whenever
instance identifiers are required in the RDFa annotations we assumed a two digit
identifier (which allows a page to include at least 3844 identifiers if we consider
case sensitive alphanumeric combinations).

Results: The Page element is considerably bigger than its pure XHTML
counterpart (header and body) when rendered in RDFa because of the names-
pace definition (at least the RaUL namespace has to be defined). However, it
is only required once for every page and as such the bytes in the table are the
absolute overhead per page. The WidgetContainer element is also adding about
2 1/2 times the overhead to a pure form container in XHTML. Again, only one
WidgetContainer for every form is required (typically one per page) and as such
the added bytes in the table are in most cases only added once per page. An
annotated Textbox takes about twice the size of the pure XHTML form and
only requires one triple in the backend. Adding all properties (in total 7 RDF
statements) to a Textbox causes an overhead of about 277%. The Listbox control
rendered in RDFa adds more than 3 1/2 times the size of the pure XHTML form.
This is due to the fact that there is at least one Listitem associated to a Listbox,
which is modeled as a class in RaUL. As such, a Listbox needs at least four state-
ments (RDF triples). Similar to the Textbox an annotated Button takes about
twice the size of the pure XHTML control element and only requires one triple
in the backend. Again, adding all properties to a Button adds a considerable
amount of space (more than four times the pure XHTML element) to the page
due to the Group class which can be used to associate multiple buttons together
(see Section 4.1). However, it also includes 8 triples in the annotation.

Discussion: The overhead seems to be significant in size, especially if all
properties of a form control element are used. Whereas a Textbox and a Button
only about double the size of the pure XHTML form element in its minimal
configuration, a Listbox and a Button with all properties defined add about four
times the size. Similar to adding div containers and CSS styles to XHTML,
adding RDFa increases the size of the file. Since the RDFa annotations are
additions to the XHTML code the size of the encoding is influenced by the
verbose syntax of the RDFa model. As there are potentially many form controls
in a web form, the user has the trade-off between the depth of the annotations
and the size they consume. The bigger size, though, does not necessarily cause
more packages delivered over the wire. However, if the data transfer volume is
pivotal, the rendering of the document can be achieved by a JavaScript DOM
generation algorithm that operates on pure XML/RDF. Another option is to
install a client-side code (similar to the Firefox extensions for XUL) that does
the rendering of pure XML/RDF.

7 Conclusion

In this paper we introduced RaUL, the RDFa User Interface Language, which
provides a standard set of visual controls that are replacing the XHTML form
controls. The RaUL form controls are directly usable to define a web page in the
backend with RDF statements according to the RaUL ontology. RaUL form con-
trols separate the functional aspects of the underlying control (the data model)
from the presentational aspects (the form model). The data model, which de-
scribes the structure of the exchanged data (expressed as RDFa annotations) is
referenced from the form model via a data binding mechanism. For the rendering

of the instances of a RaUL model on the client-side we propose ActiveRaUL, a
processor that generates XHTML+RDFa elements for displaying the model on
the client. Only when data is submitted to the server a JSP servlet creates the
RDF triples. Summarized, the advantages of RaUL in comparison to standard
XHTML forms are:

1. Data typing: Submitted data is typed through the ontological model.
2. RDF data submission: The received RDF instance document can be di-

rectly validated and processed by the application back-end.
3. Explicit form structure: The form elements are explicitly modeled as

RDF statements. The backend can manipulate and create forms by editing
and creating RDF statements only.

4. External schema augmentation: This enables the RaUL web application
author to reuse existing schemas in the modeling of the input data model.

Acknowledgements This work is part of the water information research and
development alliance between CSIRO’s Water for a Healthy Country Flagship
and the Bureau of Meteorology.

References

1. Fresnel, Display Vocabulary for RDF. http://www.w3.org/2005/04/
fresnel-info/, 2005.

2. Cross-Origin Resource Sharing. http://www.w3.org/TR/cors/, 2010.
3. XForms Working Groups. http://www.w3.org/MarkUp/Forms/, 2010.
4. B. Adida, M. Birbeck, S. McCarron, and S. Pemberton. RDFa in XHTML: Syntax

and Processing. W3C Recommendation 14 October 2008, W3C Semantic Web
Deployment Working Group, 2008.

5. M. Baker. RDF Forms. http://www.markbaker.ca/2003/05/RDF-Forms/, 2003.
6. T. Berners-Lee, R. Cyganiak, M. Hausenblas, J. Presbrey, O. Sneviratne, and O.-E.

Ureche. On integration issues of site-specific apis into the web of data. Technical
report, 2009.

7. M. Birbeck. backplanejs. http://code.google.com/p/backplanejs/, 2010.
8. D. Brickley and L. Miller. FOAF Vocabulary Specification 0.91. Namespace doc-

ument, Nov. 2007.
9. B. de hOra. Automated mapping between RDF and forms. http:

//www.dehora.net/journal/2005/08/automated_mapping_between_rdf_and_
forms_part_i.html, 2005.

10. S. Dietzold, S. Hellmann, and M. Peklo. Using javascript rdfa widgets for mod-
el/view separation inside read/write websites. In Proceedings of the 4th Workshop
on Scripting for the Semantic Web, 2008.

11. M. Hausenblas. RDForms Vocabulary. http://rdfs.org/ns/rdforms/html, 2010.
12. G. Klyne, J. J. Carroll, and B. McBride. RDF/XML Syntax Specification (Re-

vised). W3C Recommendation, RDF Core Working Group, 2004.
13. M. Maleshkova, C. Pedrinaci, and J. Domingue. Semantic Annotation of Web APIs

with SWEET. In Proceedings of the 6th Workshop on Scripting and Development
for the Semantic Web, 2010.

14. T. Reenskaug. The original MVC reports, February 2007.
15. RFC2818. HTTP Over TLS. http://www.ietf.org/rfc/rfc2818.txt, 2000.
16. O. Ureche, A. Iqbal, R. Cyganiak, and M. Hausenblas. On Integration Issues of

Site-Specific APIs into the Web of Data. In Semantics for the Rest of Us Workshop
(SemRUs) at ISWC09, Washington DC, USA, 2009.

17. XMLHttpRequest. W3C Working Draft. http://www.w3.org/TR/
XMLHttpRequest/, 2009.

